Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
J Am Chem Soc ; 146(10): 6493-6505, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426440

RESUMO

PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.


Assuntos
Metionina , Ornitina/análogos & derivados , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Lisina , Racemetionina , Espectroscopia de Ressonância de Spin Eletrônica
2.
Medicine (Baltimore) ; 103(8): e37015, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394536

RESUMO

BACKGROUND: Peptidyl (protein) arginine deiminases (PADs) provide the transformation of peptidyl arginine to peptidyl citrulline in the presence of calcium with posttranslational modification. The dysregulated PAD activity plays an important role on too many diseases including also the cancer. In this study, it has been aimed to determine the potential cytotoxic and apoptotic activity of chlorine-amidine (Cl-amidine) which is a PAD inhibitor and whose effectiveness has been shown in vitro and in vivo studies recently on human glioblastoma cell line Uppsala 87 malignant glioma (U-87 MG) forming an in vitro model for the glioblastoma multiforme (GBM) which is the most aggressive and has the highest mortality among the brain tumors. METHODS: In the study, the antiproliferative and apoptotic effects of Cl-amidine on GBM cancer model were investigated. The antiproliferative effects of Cl-amidine on U-87 MG cells were determined by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate method at the 24th and 48th hours. The apoptotic effects were analyzed by Annexin V and Propidium iodide staining, caspase-3 activation, and mitochondrial membrane polarization (5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide) methods in the flow cytometry. RESULTS: It has been determined that Cl-amidine exhibits notable antiproliferative properties on U-87 MG cell line in a time and concentration-dependent manner, as determined through the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate assay. Assessment of apoptotic effects via Annexin V and Propidium iodide staining and 5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide methods has revealed significant efficacy, particularly following a 24-hour exposure period. It has been observed that Cl-amidine induces apoptosis in cells by enhancing mitochondrial depolarization, independently of caspase-3 activation. Furthermore, regarding its impact on healthy cells, it has been demonstrated that Cl-amidine shows lower cytotoxic effects when compared to carmustine, an important therapeutic agent for glioblastoma. CONCLUSION: The findings of this study have shown that Cl-amidine exhibits significant potential as an anticancer agent in the treatment of GBM. This conclusion is based on its noteworthy antiproliferative and apoptotic effects observed in U-87 MG cells, as well as its reduced cytotoxicity toward healthy cells in comparison to existing treatments. We propose that the antineoplastic properties of Cl-amidine should be further investigated through a broader spectrum of cancer cell types. Moreover, we believe that investigating the synergistic interactions of Cl-amidine with single or combination therapies holds promise for the discovery of novel anticancer agents.


Assuntos
Antineoplásicos , Glioblastoma , Nitrofenóis , Ornitina/análogos & derivados , Humanos , Cloro , Glioblastoma/metabolismo , Anexina A5 , Benzeno , Carbocianinas/farmacologia , Caspase 3/metabolismo , Iodetos/metabolismo , Iodetos/farmacologia , Propídio , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Amidinas/farmacologia , Arginina/metabolismo , Apoptose
3.
Vet Res ; 55(1): 6, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217046

RESUMO

Although the role of iron in bacterial infections has been well described for Staphylococcus (S.) aureus, iron acquisition in (bovine-associated) non-aureus staphylococci and mammaliicocci (NASM) remains insufficiently mapped. This study aimed at elucidating differences between four diverse bovine NASM field strains from two species, namely S. chromogenes and S. equorum, in regards to iron uptake (with ferritin and lactoferrin as an iron source) and siderophore production (staphyloferrin A and staphyloferrin B) by investigating the relationship between the genetic basis of iron acquisition through whole genome sequencing (WGS) with their observed phenotypic behavior. The four field strains were isolated in a previous study from composite cow milk (CCM) and bulk tank milk (BTM) in a Flemish dairy herd. Additionally, two well-studied S. chromogenes isolates originating from a persistent intramammary infection and from a teat apex were included for comparative purpose in all assays. Significant differences between species and strains were identified. In our phenotypical iron acquisition assay, while lactoferrin had no effect on growth recovery for all strains in iron deficient media, we found that ferritin served as an effective source for growth recovery in iron-deficient media for S. chromogenes CCM and BTM strains. This finding was further corroborated by analyzing potential ferritin iron acquisition genes using whole-genome sequencing data, which showed that all S. chromogenes strains contained hits for all three proposed ferritin reductive pathway genes. Furthermore, a qualitative assay indicated siderophore production by all strains, except for S. equorum. This lack of siderophore production in S. equorum was supported by a quantitative assay, which revealed significantly lower or negligible siderophore amounts compared to S. aureus and S. chromogenes. The WGS analysis showed that all tested strains, except for S. equorum, possessed complete staphyloferrin A (SA)-synthesis and export operons, which likely explains the phenotypic absence of siderophore production in S. equorum strains. While analyzing the staphyloferrin A and staphyloferrin B operon landscapes for all strains, we noticed some differences in the proteins responsible for iron acquisition between different species. However, within strains of the same species, the siderophore-related proteins remained conserved. Our findings contribute valuable insights into the genetic elements associated with bovine NASM pathogenesis.


Assuntos
Doenças dos Bovinos , Citratos , Mastite Bovina , Ornitina/análogos & derivados , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Staphylococcus aureus/genética , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Lactoferrina/genética , Mastite Bovina/microbiologia , Staphylococcus , Leite , Ferro , Sideróforos , Ferritinas , Doenças dos Bovinos/microbiologia
4.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884657

RESUMO

This study deals with the process of optimization and synthesis of Poly(3-hydroxybutyrate) microspheres with encapsulated Cl-amidine. Cl-amidine is an inhibitor of peptidylarginine deiminases (PADs), a group of calcium-dependent enzymes, which play critical roles in a number of pathologies, including autoimmune and neurodegenerative diseases, as well as cancer. While Cl-amidine application has been assessed in a number of in vitro and in vivo models; methods of controlled release delivery remain to be investigated. P(3HB) microspheres have proven to be an effective delivery system for several compounds applied in antimicrobial, wound healing, cancer, and cardiovascular and regenerative disease models. In the current study, P(3HB) microspheres with encapsulated Cl-amidine were produced in a size ranging from ~4-5 µm and characterized for surface morphology, porosity, hydrophobicity and protein adsorption, in comparison with empty P(3HB) microspheres. Cl-amidine encapsulation in P(3HB) microspheres was optimized, and these were found to be less hydrophobic, compared with the empty microspheres, and subsequently adsorbed a lower amount of protein on their surface. The release kinetics of Cl-amidine from the microspheres were assessed in vitro and expressed as a function of encapsulation efficiency. There was a burst release of ~50% Cl-amidine in the first 24 h and a zero order release from that point up to 16 days, at which time point ~93% of the drug had been released. As Cl-amidine has been associated with anti-cancer effects, the Cl-amidine encapsulated microspheres were assessed for the inhibition of vascular endothelial growth factor (VEGF) expression in the mammalian breast cancer cell line SK-BR-3, including in the presence of the anti-proliferative drug rapamycin. The cytotoxicity of the combinatorial effect of rapamycin with Cl-amidine encapsulated P(3HB) microspheres was found to be 3.5% more effective within a 24 h period. The cells treated with Cl-amidine encapsulated microspheres alone, were found to have 36.5% reduction in VEGF expression when compared with untreated SK-BR-3 cells. This indicates that controlled release of Cl-amidine from P(3HB) microspheres may be effective in anti-cancer treatment, including in synergy with chemotherapeutic agents. Using controlled drug-delivery of Cl-amidine encapsulated in Poly(3-hydroxybutyrate) microspheres may be a promising novel strategy for application in PAD-associated pathologies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Hidroxibutiratos/administração & dosagem , Ornitina/análogos & derivados , Poliésteres/administração & dosagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Feminino , Humanos , Hidroxibutiratos/química , Microesferas , Ornitina/administração & dosagem , Ornitina/química , Poliésteres/química , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638532

RESUMO

Bone metastases from prostate cancer (PCa) result from a complex cross-talk between PCa cells and osteoblasts (OB). Thus, targeting this interplay has become an attractive strategy to interfere with PCa bone dissemination. The agents currently used in clinical trials have proved ineffective, boosting research to identify additional mechanisms that may be involved in this two-directional talk. Here, we investigated whether and how 5-hydro-5-methylimidazolone (MG-H1), a specific methylglyoxal (MG)-derived advanced glycation end product (AGE), was a novel player in the dialogue between PCa and OB to drive PCa bone metastases. Conditioned medium from osteotropic PC3 PCa cells, pre-treated or not with a specific MG scavenger, was administrated to human primary OB and cell morphology, mesenchymal trans-differentiation, pro-osteogenic determinants, PCa-specific molecules, and migration/invasion were studied by phase-contrast microscopy, real-time PCR, western blot and specific assays, respectively. We found that PC3 cells were able to release MG-H1 that, by binding to the receptor for AGEs (RAGE) on OB, reprogrammed them into a less-differentiate phenotype, endowed with some PCa-specific molecular features and malignant properties, in a mechanism involving reactive oxidative species (ROS) production and NF-kB pathway activation. These findings provide novel insights into the mechanisms of PCa osteoblastic metastases and foster in vivo research toward new therapeutic strategies interfering with PCa/OB cross-talk.


Assuntos
Neoplasias Ósseas/secundário , Desdiferenciação Celular/fisiologia , Imidazóis/metabolismo , Ornitina/análogos & derivados , Osteoblastos/citologia , Neoplasias da Próstata/patologia , Antígenos de Neoplasias/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Meios de Cultivo Condicionados/farmacologia , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ornitina/metabolismo , Células PC-3 , Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo
6.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067107

RESUMO

Increased blood glucose in diabetic individuals results in the formation of advanced glycation end products (AGEs), causing various adverse effects on kidney cells, thereby leading to diabetic nephropathy (DN). In this study, the antiglycative potential of Swertiamarin (SM) isolated from the methanolic extract of E. littorale was explored. The effect of SM on protein glycation was studied by incubating bovine serum albumin with fructose at 60 °C in the presence and absence of different concentrations of swertiamarin for 24 h. For comparative analysis, metformin was also used at similar concentrations as SM. Further, to understand the role of SM in preventing DN, in vitro studies using NRK-52E cells were done by treating cells with methylglyoxal (MG) in the presence and absence of SM. SM showed better antiglycative potential as compared to metformin. In addition, SM could prevent the MG mediated pathogenesis in DN by reducing levels of argpyrimidine, oxidative stress and epithelial mesenchymal transition in kidney cells. SM also downregulated the expression of interleukin-6, tumor necrosis factor-α and interleukin-1ß. This study, for the first time, reports the antiglycative potential of SM and also provides novel insights into the molecular mechanisms by which SM prevents toxicity of MG on rat kidney cells.


Assuntos
Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Pironas/farmacologia , Animais , Bovinos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluorescência , Frutose , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Inflamação/patologia , Glucosídeos Iridoides/química , Glucosídeos Iridoides/isolamento & purificação , Ligantes , Malondialdeído/metabolismo , Espectrometria de Massas , Ornitina/análogos & derivados , Ornitina/química , Ornitina/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Pironas/química , Pironas/isolamento & purificação , Aldeído Pirúvico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Soroalbumina Bovina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Sci Rep ; 11(1): 6389, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737637

RESUMO

There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.


Assuntos
Receptor 1 de Folato/genética , Ácido Fólico/metabolismo , Neoplasias/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Proteína Carregadora de Folato Reduzido/genética , Transporte Biológico/genética , Proliferação de Células/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/genética , Antagonistas do Ácido Fólico/farmacologia , Células HeLa , Humanos , Metotrexato/farmacologia , Neoplasias/genética , Neoplasias/metabolismo , Ornitina/análogos & derivados , Ornitina/farmacologia , Pemetrexede/farmacologia , Transportador de Folato Acoplado a Próton/metabolismo , Pterinas/farmacologia , Proteína Carregadora de Folato Reduzido/metabolismo
8.
Carcinogenesis ; 42(5): 705-713, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33780524

RESUMO

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the non-enzymatic reaction between amino acids and reducing sugars, or dicarbonyls as intermediate compounds. Experimental studies suggest that AGEs may promote colorectal cancer, but prospective epidemiologic studies are inconclusive. We conducted a case-control study nested within a large European cohort. Plasma concentrations of three protein-bound AGEs-Nε-(carboxy-methyl)lysine (CML), Nε-(carboxy-ethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)-were measured by ultra-performance liquid chromatography-tandem mass spectrometry in baseline samples collected from 1378 incident primary colorectal cancer cases and 1378 matched controls. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed using conditional logistic regression for colorectal cancer risk associated with CML, CEL, MG-H1, total AGEs, and [CEL+MG-H1: CML] and [CEL:MG-H1] ratios. Inverse colorectal cancer risk associations were observed for CML (OR comparing highest to lowest quintile, ORQ5 versus Q1 = 0.40, 95% CI: 0.27-0.59), MG-H1 (ORQ5 versus Q1 = 0.73, 95% CI: 0.53-1.00) and total AGEs (OR Q5 versus Q1 = 0.52, 95% CI: 0.37-0.73), whereas no association was observed for CEL. A higher [CEL+MG-H1: CML] ratio was associated with colorectal cancer risk (ORQ5 versus Q1 = 1.91, 95% CI: 1.31-2.79). The associations observed did not differ by sex, or by tumour anatomical sub-site. Although individual AGEs concentrations appear to be inversely associated with colorectal cancer risk, a higher ratio of methylglyoxal-derived AGEs versus those derived from glyoxal (calculated by [CEL+MG-H1: CML] ratio) showed a strong positive risk association. Further insight on the metabolism of AGEs and their dicarbonyls precursors, and their roles in colorectal cancer development is needed.


Assuntos
Neoplasias Colorretais/genética , Produtos Finais de Glicação Avançada/genética , Lisina/análogos & derivados , Ornitina/análogos & derivados , Adulto , Idoso , Cromatografia Líquida , Estudos de Coortes , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Produtos Finais de Glicação Avançada/sangue , Humanos , Imidazóis/sangue , Lisina/sangue , Lisina/genética , Masculino , Pessoa de Meia-Idade , Razão de Chances , Ornitina/sangue , Ornitina/genética , Espectrometria de Massas em Tandem
9.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573274

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/metabolismo , Neoplasias Pancreáticas/patologia , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Invasividade Neoplásica/patologia , Ornitina/análogos & derivados , Ornitina/farmacologia , Ornitina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Proibitinas , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 3/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo
10.
Mediators Inflamm ; 2020: 3649613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908448

RESUMO

BACKGROUND: Brain injury is the leading cause of death following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Ac2-26 and endothelial nitric oxide synthase (eNOS) have been shown to reduce neuroinflammation. This study is aimed at determining the mechanism by which Ac2-26 protects against inflammation during brain injury following CA and CPR. METHODS: Sixty-four rats were randomized into sham, saline, Ac2-26, and Ac2-26+L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor) groups. Rats received Ac2-26, Ac2-26+L-NIO, or saline after CPR. Neurologic function was assessed at baseline, 24, and 72 hours after CPR. At 72 hours after resuscitation, serum and brain tissues were collected. RESULTS: Blood-brain barrier (BBB) permeability increased, and the number of surviving neurons and neurological function decreased in the saline group compared to the sham group. Anti-inflammatory and proinflammatory factors, neuron-specific enolase (NSE) levels, and the expression of eNOS, phosphorylated (p)-eNOS, inducible nitric oxide synthase (iNOS), and oxidative stress-related factors in the three CA groups significantly increased (P < 0.05). BBB permeability decreased, and the number of surviving neurons and neurological function increased in the Ac2-26 group compared to the saline group (P < 0.05). Ac2-26 increased anti-inflammatory and reduced proinflammatory markers, raised NSE levels, increased the expression of eNOS and p-eNOS, and reduced the expression of iNOS and oxidative stress-related factors compared to the saline group (P < 0.05). The effect of Ac2-26 on brain injury was reversed by L-NIO (P < 0.05). CONCLUSIONS: Ac2-26 reduced brain injury after CPR by inhibiting oxidative stress and neuroinflammation and protecting the BBB. The therapeutic effect of Ac2-26 on brain injury was largely dependent on the eNOS pathway.


Assuntos
Anexina A1/metabolismo , Lesões Encefálicas/metabolismo , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/metabolismo , Animais , Anti-Inflamatórios , Barreira Hematoencefálica , Inflamação , Masculino , Neurônios/metabolismo , Ornitina/análogos & derivados , Ornitina/farmacologia , Estresse Oxidativo , Permeabilidade , Ratos , Ratos Sprague-Dawley
11.
Nat Commun ; 11(1): 3169, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576825

RESUMO

Understanding tumor metabolism holds the promise of new insights into cancer biology, diagnosis and treatment. To assess human cancer metabolism, here we report a method to collect intra-operative samples of blood from an artery directly upstream and a vein directly downstream of a brain tumor, as well as samples from dorsal pedal veins of the same patients. After performing targeted metabolomic analysis, we characterize the metabolites consumed and produced by gliomas in vivo by comparing the arterial supply and venous drainage. N-acetylornithine, D-glucose, putrescine, and L-acetylcarnitine are consumed in relatively large amounts by gliomas. Conversely, L-glutamine, agmatine, and uridine 5-monophosphate are produced in relatively large amounts by gliomas. Further we verify that D-2-hydroxyglutarate (D-2HG) is high in venous plasma from patients with isocitrate dehydrogenases1 (IDH1) mutations. Through these paired comparisons, we can exclude the interpatient variation that is present in plasma samples usually taken from the cubital vein.


Assuntos
Biomarcadores Tumorais/sangue , Vasos Sanguíneos/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/metabolismo , Glioma/sangue , Glioma/metabolismo , Metabolômica , Acetilcarnitina/sangue , Adulto , Idoso , Agmatina/sangue , Sangue , Análise Química do Sangue , Glicemia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Glucose , Glutamina/sangue , Glutaratos/sangue , Humanos , Isocitrato Desidrogenase/sangue , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Ornitina/análogos & derivados , Ornitina/sangue , Putrescina/sangue , Uridina Monofosfato/sangue , Adulto Jovem
12.
Int Immunopharmacol ; 84: 106583, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32416455

RESUMO

BACKGROUND AND AIM: Many evidences indicated that neutrophil extracellular traps (NETs) are involved in the pathogenesis of inflammatory bowel disease (IBD). Citrullination of histones by Protein Arginine Deiminase-4 (PAD4) is central for NETs formation. This paper aimed to explore the definite role of NETs in mouse model of Crohn's disease (CD) with 2,4,6-trinitrobenzene sulfonic acid (TNBS). METHODS: The expression of NETs-associated proteins and mRNAs in colon tissue were detected by immunohistochemistry and Real-time Quantitative PCR (QPCR) respectively. Neutrophils were isolated and stimulated in vitro to form NETs. In addition, we also administered Cl-amidine, PAD4 inhibitor, resulting in less NETs formation to investigate protective effect by measuring weight loss, gross bleeding, colon length, myeloperoxidase (MPO) activity, and cytokine expression in mice. RESULTS: The results showed enhanced expression of Ly6G, citrullinated histone H3 (CitH3), and PAD4 in TNBS-induced colitis mice and higher ability of neutrophil to produce NETs in vitro. Blocking NETs formation through Cl-amidine effectively alleviated the clinical colitis index and tissue inflammation in TNBS mice, regulated the expression of pro- or anti-inflammatory cytokines. In addition, Cl-amidine reduced the gene expression of PAD4 and the expression of NETs-associated proteins in the colon of TNBS mice and inhibited the formation of NETs in vitro. CONCLUSIONS: Our data showed that Cl-amidine could alleviate the clinical colitis index in TNBS mice to some extend and suggested blocking NETs formation through inhibition of PAD4 as therapeutic targets for the treatment of CD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Ornitina/análogos & derivados , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/imunologia , Doença de Crohn/patologia , Citocinas/sangue , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Ornitina/farmacologia , Ornitina/uso terapêutico , Proteína-Arginina Desiminase do Tipo 4/imunologia , Ácido Trinitrobenzenossulfônico
13.
Drug Dev Res ; 81(1): 93-101, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633211

RESUMO

Recent in vitro studies have shown a role for the peptidyl-arginine deiminases (PADs) in bone resorption. However, it is unknown whether these enzymes are involved in bone loss in vivo. Thus, we evaluated the antiresorptive effect of a pan-PAD inhibitor in two murine models of osteoporosis: (a) primary osteoporosis induced by ovariectomy (OVX); and (b) secondary osteoporosis associated to Type-1 diabetes induced by streptozotocin (STZ, 50 mg/kg, i.p., five daily administrations). Five weeks after OVX and 15 weeks after injections of STZ, mice received daily administrations of Cl-amidine (3 or 10 mg/kg, i.p.) or vehicle for 30 consecutive days. At the end of the treatment, femur and vertebra were harvested for microCT analysis. Blood samples were collected for determination of antibodies against cyclic citrullinated peptides (anti-CCP) by enzyme-linked immunosorbent assay. Serum levels of anti-CCP antibodies from diabetic mice were not significantly different compared to control mice. However, a significant loss of both trabecular bone at the femoral neck and cortical bone at the femoral diaphysis was found in diabetic mice, and Cl-amidine did not reverse the diabetes-induced bone loss. Mice with OVX had significantly lower serum levels of anti-CCP compared to mice with sham surgery. OVX resulted in significant loss of both trabecular bone at the L5 vertebra and distal femoral metaphysis. Cl-amidine did not block the OVX-induced bone loss. Our results suggest that chronic treatment with Cl-amidine at the doses and period of time administered is not long enough to inhibit bone loss in two different murine models of osteoporosis.


Assuntos
Diabetes Mellitus Experimental/complicações , Ornitina/análogos & derivados , Osteoporose/tratamento farmacológico , Ovariectomia/efeitos adversos , Administração Oral , Animais , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Camundongos , Ornitina/administração & dosagem , Ornitina/farmacologia , Osteoporose/diagnóstico por imagem , Osteoporose/etiologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos , Estreptozocina , Resultado do Tratamento , Microtomografia por Raio-X
14.
J Exp Clin Cancer Res ; 38(1): 414, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601253

RESUMO

BACKGROUND: Tamoxifen resistance presents a huge clinical challenge for breast cancer patients. An understanding of the mechanisms of tamoxifen resistance can guide development of efficient therapies to prevent drug resistance. METHODS: We first tested whether peptidylarginine deiminase 2 (PAD2) may be involved in tamoxifen-resistance in breast cancer cells. The effect of depleting or inhibiting PAD2 in tamoxifen-resistant MCF-7 (MCF7/TamR) cells was evaluated both in vitro and in vivo. We then investigated the potential of Cl-amidine, a PAD inhibitor, to be used in combination with tamoxifen or docetaxel, and further explored the mechanism of the synergistic and effective drug regimen of PADs inhibitor and docetaxel on tamoxifen-resistant breast cancer cells. RESULTS: We report that PAD2 is dramatically upregulated in tamoxifen-resistant breast cancer. Depletion of PAD2 in MCF7/TamR cells facilitated the sensitivity of MCF7/TamR cells to tamoxifen. Moreover, miRNA-125b-5p negatively regulated PAD2 expression in MCF7/TamR cells, therefore overexpression of miR-125b-5p also increased the cell sensitivity to tamoxifen. Furthermore, inhibiting PAD2 with Cl-amidine not only partially restored the sensitivity of MCF7/TamR cells to tamoxifen, but also more efficiently enhanced the efficacy of docetaxel on MCF7/TamR cells with lower doses of Cl-amidine and docetaxel both in vivo and in vivo. We then showed that combination treatment with Cl-amidine and docetaxel enhanced p53 nuclear accumulation, which synergistically induced cell cycle arrest and apoptosis. Meanwhile, p53 activation in the combination treatment also accelerated autophagy processes by synergistically decreasing the activation of Akt/mTOR signaling, thus enhancing the inhibition of proliferation. CONCLUSION: Our results suggest that PAD2 functions as an important new biomarker for tamoxifen-resistant breast cancers and that inhibiting PAD2 combined with docetaxel may offer a new approach to treatment of tamoxifen-resistant breast cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Docetaxel/farmacologia , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Tamoxifeno/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Autofagia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ornitina/análogos & derivados , Ornitina/farmacologia , Ornitina/uso terapêutico , Proteína-Arginina Desiminase do Tipo 2/genética , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Tamoxifeno/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sci Rep ; 9(1): 11688, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406207

RESUMO

Malignant mesothelioma (MM) is an asbestos-induced cancer arising on the mesothelial surface of organ cavities. MM is essentially incurable without a means of early diagnosis and no successful standard of care. These facts indicate a deep chasm of knowledge that needs to be filled. Our group recently delved into MM tumor biology from the perspective of exosome-contained microRNAs (miRNAs). We discovered that the most abundant miRNAs in MM cancer exosomes were tumor suppressors, particularly miR-16-5p. This observation lead us to hypothesize that MM cells preferentially secreted tumor-suppressor miRNAs via exosomes. Through separate avenues of potential therapeutic advance, we embarked on an innovative strategy to kill MM tumor cells. We employed small molecule inhibitors to block exosome secretion, thereby reducing miR-16-5p exosome loss and replenishing cellular miR-16-5p leading to reduced tumorigenic capacity and miR-16-5p target oncoproteins CCND1 and BCL2. Additionally, we force-fed MM tumor exosomes back to MM tumor cells, which led to cell death, and a reduction in the same oncoproteins. We recapitulated these results with direct transfection of miR-16-5p, confirmed that this is a cancer-cell specific effect, and elucidated a part of the miR-16-5p mechanism of exosome loading.


Assuntos
Antineoplásicos/farmacologia , Ciclina D1/genética , Exossomos/química , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Compostos de Anilina/farmacologia , Compostos de Benzilideno/farmacologia , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Exossomos/metabolismo , Humanos , Indóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Maleimidas/farmacologia , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , MicroRNAs/metabolismo , Terapia de Alvo Molecular/métodos , Ornitina/análogos & derivados , Ornitina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Transfecção
16.
Cells ; 8(6)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174324

RESUMO

Methylglyoxal (MG) is a potent inducer of advanced glycation end products (AGEs). MG, long considered a highly cytotoxic molecule with potential anticancer value, is now being re-evaluated to a protumorigenic agent in some malignancies. Anaplastic thyroid cancer (ATC) is an extremely aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Successful therapeutic intervention in ATC is undermined by our poor understanding of its molecular etiology. In the attempt to understand the role of MG in ATC aggressiveness, we used immunohistochemistry to examine the level of MG protein adducts in ATC and slow-growing papillary thyroid cancer (PTC). We detected a high level of MG adducts in ATC compared to PTC ones, suggesting a protumor role for MG-mediated dicarbonyl stress in ATC. Accordingly, MG adduct accumulation in ATC cells in vitro was associated with a marked mesenchymal phenotype and increased migration/invasion, which were both reversed by aminoguanidine (AG)-a scavenger of MG-and resveratrol-an activator of Glyoxalase 1 (Glo1), the key metabolizing enzyme of MG. Our study represents the first demonstration that MG, via AGEs, acts as a tumor-promoting factor in ATC and suggests that MG scavengers and/or Glo1 activators merit investigations as potential therapeutic strategies for this malignancy.


Assuntos
Aldeído Pirúvico/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Masculino , Pessoa de Meia-Idade , Ornitina/análogos & derivados , Ornitina/química , Ornitina/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/toxicidade , Transdução de Sinais/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
17.
Neuromolecular Med ; 21(4): 484-492, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152363

RESUMO

Stroke significantly affects white matter in the brain by impairing axon function, which results in clinical deficits. Axonal mitochondria are highly dynamic and are transported via microtubules in the anterograde or retrograde direction, depending upon axonal energy demands. Recently, we reported that mitochondrial division inhibitor 1 (Mdivi-1) promotes axon function recovery by preventing mitochondrial fission only when applied during ischemia. Application of Mdivi-1 after injury failed to protect axon function. Interestingly, L-NIO, which is a NOS3 inhibitor, confers post-ischemic protection to axon function by attenuating mitochondrial fission and preserving mitochondrial motility via conserving levels of the microtubular adaptor protein Miro-2. We propose that preventing mitochondrial fission protects axon function during injury, but that restoration of mitochondrial motility is more important to promote axon function recovery after injury. Thus, Miro-2 may be a therapeutic molecular target for recovery following a stroke.


Assuntos
Transporte Axonal , Axônios/patologia , AVC Isquêmico/patologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Quinazolinonas/uso terapêutico , Substância Branca/patologia , Trifosfato de Adenosina/biossíntese , Envelhecimento/patologia , Animais , Transporte Axonal/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipóxia-Isquemia Encefálica/patologia , AVC Isquêmico/tratamento farmacológico , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/fisiologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ornitina/análogos & derivados , Ornitina/farmacologia , Quinazolinonas/farmacologia , Traumatismo por Reperfusão/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/ultraestrutura , Proteínas rho de Ligação ao GTP/fisiologia
18.
Sci Rep ; 9(1): 3836, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846809

RESUMO

The kiwifruit bacterial canker pathogen, Pseudomonas syringae pv. actinidiae (Psa), causes enormous economic damages in many kiwifruit producing countries. In 2015, biovar 6, the novel biovar of Psa, was found in Nagano Prefecture, Japan. The genomes of two representative strains of biovar 6 (MAFF 212134 and MAFF 212141) were sequenced and analysed, indicating that their genomes are the most similar to that of biovar 3 among the known Psa biovars, based on average nucleotide identity analysis. Biovar 3 has neither the phaseolotoxin synthesis gene cluster nor the coronatine synthesis gene cluster, whereas biovar 6 has both clusters and produces both phytotoxins. We found that biovar 6 possesses 29 type III secreted effector (T3SE) genes, among which avrRps4 and hopBI1 are unique to biovar 6. The expression of T3SE genes and two phytotoxin synthesis gene clusters of biovar 6 during the early stages of host infection was investigated using RNA-Seq analysis, showing that these genes could be grouped into three categories: constantly expressed genes, constantly suppressed genes, and temporarily induced genes. A PCR assay was established to differentiate biovar 6 strains from the other Psa biovars and the closely related pathovar, pv. actinidifoliorum, by using avrRps4 as a biovar 6-specific marker gene.


Assuntos
Aminoácidos/metabolismo , Genoma Bacteriano/genética , Indenos/metabolismo , Ornitina/análogos & derivados , Pseudomonas syringae/genética , Urease/metabolismo , Actinidia/microbiologia , Aminoácidos/genética , Genes de Plantas/genética , Ornitina/genética , Ornitina/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Urease/genética
19.
Cell Stress Chaperones ; 24(2): 419-426, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30756294

RESUMO

This study analyzed the interaction of commercial monoclonal anti-methylglyoxal antibodies that predominantly recognize argpyrimidine with unmodified and modified model proteins and small heat shock proteins. These antibodies specifically recognize methylglyoxal (MG)-modified bovine serum albumin and lysozyme, but they react equally well with both unmodified and MG-modified HspB1. Mutation R188W decreased the interaction of these antibodies with unmodified HspB1, thus indicating that this residue participates in the formation of antigenic determinant. However, these antibodies did not recognize either short (ESRAQ) or long (IPVTFESRAQLGGP) peptides with primary structure identical to that at Arg188 of HspB1. Neither of the peptides obtained after the cleavage of HspB1 at Met or Cys residues were recognized by anti-argpyrimidine antibodies. This means that unmodified HspB1 contains a discontinuous epitope that includes the sequence around Arg188 and that this epitope is recognized by anti-argpyrimidine antibodies in unmodified HspB1. Incubation of HspB1 with MG is accompanied by the accumulation of hydroimidazolones, but not argpyrimidines. Therefore, conclusions based on utilization of anti-argpyrimidine antibodies and indicating that HspB1 is the predominant and preferential target of MG modification in the cell require revision.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/metabolismo , Anticorpos Monoclonais , Sítios de Ligação , Proteínas de Choque Térmico HSP27/genética , Células HeLa , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Mutação , Ornitina/análogos & derivados , Ornitina/imunologia , Peptídeos/metabolismo , Ligação Proteica , Pirimidinas/imunologia , Aldeído Pirúvico/imunologia
20.
J Am Chem Soc ; 141(3): 1261-1268, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30597119

RESUMO

Manipulating phase separation structures of thermoresponsive polymers will enhance the usefulness of structure-controllable materials in fields such as drug delivery and tissue engineering. However, behaviors of upper critical solution temperature (UCST) have been less investigated so far, despite the importance of UCST. Here, we examined two citrulline-based polypeptides, poly(d-ornithine- co-d-citrulline) (PdOC) and poly(dl-ornithine- co-dl-citrulline) (PdlOC), to investigate how stereoregularity of the polypeptides influences UCST behavior, in addition to poly(l-ornithine- co-l-citrulline) (PlOC) previously studied. Homochiral PlOC and PdOC showed phase separation temperatures ( Tps) higher than that of racemic PdlOC. Moreover, PdlOC underwent liquid to coacervate phase separation at Tp, whereas PlOC and PdOC underwent liquid to solid-like aggregation transitions. From a structural point of view, circular dichroism and small-angle X-ray scattering measurements revealed that homochiral PlOC and PdOC polypeptides formed α-helical structures and assembled into a regular hexagonal lattice upon phase separation. Interactions between the pendent ureido groups of homochiral POCs appear to play pivotal roles in helical folding and assembly into the hexagonal structure. In addition, Tp change in response to biodegradation was confirmed for both PlOC and PdlOC. The biodegradability was considerably influenced by phase-separated structures. These findings of UCST-type POCs in this study would provide important insights into structure-controllable and thermoresponsive biomaterials.


Assuntos
Citrulina/análogos & derivados , Ornitina/análogos & derivados , Peptídeos/química , Endopeptidase K/química , Simulação de Dinâmica Molecular , Transição de Fase , Proteólise , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA